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Abstract

A variety of infiltration techniques can be used to fabricate solid materials, particularly

composites. In general these processes can be described with at least one time dependent

partial differential equation describing the evolution of the solid phase, coupled to one or

more partial differential equations describing mass transport through a porous structure.

This paper presents a detailed mathematical analysis of a relatively simple set of equations

which is used to describe chemical vapor infiltration. The results demonstrate that the

process is controlled by only two parameters, c_ and _. The optimization problem associated

with minimizing the infiltration time is also considered. Allowing a and _ to vary with time

leads to significant reductions in the infiltration time, compared with the conventional case

where (_ and _ are treated as constants.
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1 Introduction

A variety of materials are produced by infiltration processes. In these techniques a fluid

phase (i.e., a gas or a liquid) is transported into a porous structure, where it then reacts to

form a solid product. These methods are particularly important for producing composite

materials, where the initial porous preform is composed of the reinforcement phase (i.e.,

fibers, whiskers, or particles) and infiltration produces the matrix. ([1]),([2]). A detailed

assessment of the relevant reaction and mass transport rates during infiltration requires

mathematical modeling, using a minimum of two coupled partial differential equations which

describe changes in the reactant concentration and the solid structure as a function of both

position and time. This type of modeling can also be extended to analyze the optimization

and control of infiltration processes.

The research presented here specifically considers optimization for a set of two equations

which describe chemical vapor infiltration (CVI). In this process a vapor-phase precursor is

transported into the porous preform, and a combination of gas and surface reactions leads

to the deposition of the solid matrix phase. In recent years a number of researchers have

developed mathematical descriptions of CVI. While these models do not provide complete,

detailed representations of CVI, they provide an excellent starting point for mathematical

and computational research on the equations which describe infiltration processes ill general.

During infiltration the formation of the solid product phase eventually closes off porosity at

the external surface of the body, blocking the flow of reactants and effectively ending the

process. This is a key feature of most infiltration processes. It is usually desirable to

maximize the amount of solid formation that occurs before this endpoint is reached. This

optimization goal is often linked to another objective. For example, CVI often requires

extremely long times, so it is also important to minimize the total processing times.

The paper is organized as follows: In Section 2 we derive a simple set of two equations

that models the infiltration processes, and we show how to get these equations as a subcase

of the general system. These are nonlinear partial differential equations. We also derive

initial and boundary conditions for the model equations. In Section 3 we present a detailed

mathematical analysis concerning the behavior of the solutions in space and time. This

analysis provides insights into the behavior of the process. In Section 4 we define the concept

of a successful process and get conditions on the paremeters of the problem for a process to

be successful. In particular we formulate an optimization problem for the minimum time it

takes for the process to settle. In Section 5 we present numerical experiments to validate the

theory. Vv'e also discuss how to design the experimental parameters to get faster successful

processes.

2 Formulation

A mathematical description of infiltration requires one or more partial differential equa-

tions which describe the evolution of the matrix (i.e., the solid phase), and one additional

partial differential equation for each chemical species in the fluid phase. For a simple pore



structure, the continuity equation for species i is

0----_ + V. Ni = _ Z,irRr (1)
T

where t is time, c is the void fraction of the media, Ci is the concentration of species i, nr

is the number of the gaseous species, z,ir is the stoichiometric coefficients for the ith gaseous

species in the rth reaction, and P_ represents the volumetric reaction rate of reaction r.

The basic partial differential equation(s) which describe reaction and mass-transport

in porous media (i.e., the fluid phase) are well-established [6, 8]. The Dusty-Gas model

[9] describes multicomponent diffusion and convection. Neglecting thermal diffusion, the

relationship between the molar fluxes, Ni, is given by [10]:

__ RT Cj Ni - CiNj CiBe+ Z - =-vc, vP (2)
DK, -_ _:)M0 #DKi

where Be is the permeability of the porous media, # is the viscosity of the mixture, and P is

the total pressure. DM_, and DKi are the effective binary diffusivity for species i and j and

the effective Knudsen diffusivity of species i, respectively.

The change in the solid structure is equivalent to considering the change in the void

fraction, e (i.e., the volume fraction of gas inside of the porous solid). The evolution of e is

given by':

OA= (3)
Ot

where u is the rate at which the solid product grows (volume/area/time) and Sv(e) is the

gas/solid surface area per unit volume of the porous solid.

The simplest formulation for the fluid phase is obtained by considering one reacting

species. For highly diluted reactant systems, the Dusty-Gas model can be simplified to give

the following approximate expression for the flux:

0C

N = -D_- (4)

where C is the concentration of diluted species and Z is the distance into the preform. The

effective diffusivity of the diluted species, D, can be expressed as

D : -_DMm [1 + Nk(a)]-' (5)

where m refers to the bulk species, DMm is the binary diffusion coefficient for M in rn,

Nk is the ratio of the Knudsen diffusion coefficient and DMm, and 0 is the tortuosity factor.

For a diffusion-limited process in one spatial dimension, using Eq. (4), Eq. (1) becomes:

_ [OC]uS_,(c) (6)O(eCi)ot ozO D-ff_ I.:,,,

where V M is the molar volume of the solid product. The last. term in Eq. (6) describes the

rate at which the gas-phase precursor is consumed (or created) by chemical reactions inside

of the pores, with the assumption that there are no homogeneous gas-phase reactions.



A specific CVI model requires expressions for u, S., and D. Our objective in this work is

to use simple formulations for each, as a basis for assessing the general behavior of infiltration

problems. As an example, consider the formation of carbon matrix composites using a

hydrocarbon in an H2 carrier gas, where the following net reaction occurs:

1CmH_ (g)-_ mC(s)+_nH2(g) (7)

The form of Eq. (6) is based on the assumption that the MTS concentration, C,, is dilute

(i.e., the reactant concentration is much smaller than the carrier gas concentration). If the

carbon growth rate is proportional to the precursor concentration, then:

 =kC, (8)

where k is the reaction rate constant.

The preforms used for CVI typically have a complex porous structure. However, a cylin-

drical pore is often used to formulate simple models. This leads to the following expression

for Sv:

2,/ oW
re

where ro isthe initialpore radius and eo isthe initialconcentration of e.

Substituting Eqs. (8) and (9) into Eqs. (3) and (6) gives the following forms:

(9)

077 1
-- _c (10)

Ot 2

where:

_z [_[I+Nk(u)]-I_] =a2_c (11)

= vq (12)

c,
c- Co (13)

Z

z L (14)

a 2- 2kv_°L_ (15)
l_roDMm

3 - 2kv_°C° - a '2VMC°DM_
ro L 2 (16)

where L is the half-thickness of the preform, Co is the concentration of the reactant species

in the bulk gas-phase (i.e., outside of the preform). The expression for a (15) is based on

the assumption that _ is determined by a first order reaction, where k is the rate constant

(i.e., _L= kC_). Note that a2 is dimensionless and that 3 has units of inverse time.



The parametersa s and/3 depend on the three key process variables: T, P, and Co. T, P

do not appear explicitly in Eqs. 15 and 16, however, k typically obeys an Arrhenius-type

exponential temperature dependence, and DMm varies with both temperature and pressure.

If the process variables are all held at single fixed values throughout the process, then a s

and /3 differ only by a lumped constant. However if one or more of the process variables is

changed as infiltration proceeds, then the proportionality between a s and/3 will also vary.

As an example of this, we consider a case where c_2 decreases while/3 is held constant (see

Section 5). One way of accomplishing this in practice is to reduce the temperature during

the course of the process, such that a s decreases (because k usually decreases faster than

Dst¢m as T decreases). To hold /3 constant, Co must be increased in a way which directly

offsets the decrease in k.

The time derivative in Eq. (6) has been removed in Eq. (11). This is permissable because

solids are much denser than gases, such that the time-scale for changes in the Cr profile is

much shorter than the time scale associated with changes in the solid structure. For gas-

solid reaction processes such as CVI, this is sometimes referred to as the pseudo steady-state

approximation [7]. Transforming c to 77simplifies equation (10). Basically 7] is propotional

to Sv, so it is also possible to view 7] as a dimensionless surface area per volume.

The boundary conditions that are most often used for CVI models are to fix the con-

centration at the outer surface of the preform at Co, and to assume that diffusion occurs in

from two opposite sides, such that there is no net flux in the middle of the preform (i.e., at

Z = L):

c(O,t) = 1 (17)

cz(1,t) =0 (lS)

The initial condition is given by:

c(z, 0)=Co (19)

During CVI, the infiltration kinetics are controlled by diffusion and the deposition reac-

tion. To achieve relatively uniform infiltration, diffusion must be fast relative to the deposi-

tion rate. This is typically accomplished by choosing processing conditions that result in a

slow deposition rate, which usually leads to long infiltration times. Thus, a key processing

objective is to obtain the desired amount of infiltration in the shortest possible time. The

total amount of infiltration in the preform is given by integrating over z:

So
E(t) = _(z,t)dz (20)

It is generally important to obtain the desired density (i.e., void fraction), cy, in the

shortest possible time. Thus, the optimization problem of interest corresponds to determin-

ing the shortest time where _(t) = of, for values of _y that are significantly smaller than

C O •

3 Properties

The following system is obtained from Eqs. (10) and (11):



O_(z,t) 9(0
- c(z,t) (21)

Ot 2

f(,7(z,t) Oz = (t),7(z,t)c(z,t) (22)

where f(q) = -@ [1 + Nk(T/)] -1 _ E C _ is a monotone increasing function of 71, a(t) ¢ 0
0 ' r/

and _(t) > 0 are C _ functions of t, and r/is v_.

The system is subject to initial conditions

as well as boundary conditions

_(z,O) = 710> 0 (23)

c(O,t) = 1 (24)

ac(1 t) = 0 (25)
Oz '

Physically, these correspond to a constant concentration at the outer surface (z = O) and

a symmetry plane at z = 1. We can immediately find the initial value for the concentration

function c(z, t)

Lemma 1

The initial distribution of the function c(z,t) is given by:

coshT0(1 - z)
c(z,O) =

cosh%

where

70 = , _°,a(O)
V J t_o)

(26)

(27)

Proof

Consider (22) at the initial time t = 0. Because of the initial condition (23) TI(z , O) = 71ois

a constant in z. Equation (22) is, therefore, a second order constant coefficient ODE whose

solution is given by (26).

[]

Lemma 2

The value of r/(z, t) at the boundary point z = 0 is given bv

lf0tr/(0, t) = T/o - _ 3(_-)d7- (28)

Proof

We read (21) for z = 0 using the boundary condition (24) c(O, t) = 1. Integration yields

(28).

5



[]

Examining the boundary valuefor 77(0,t) givenin (28), it is clear that a positive solution
doesnot exist if

1
for 9(_-)dT _o (29)

2

for some t. We define the first time that (29) is satisfied as the terminal time t B. If (29) is

never satisfied we define the terminal time tz as cx_.

We assume now that before the terminal time, r/(z, t) exists and is positive, to be precise

Assumption 1

There exists a unique positive solution r/(z, t) for any 0 _< t < tz, 0 <_ z _< 1.

solution is C _¢ in both z and t.

This

[]

Comment:

/_.From Assumption 1, it follows that there exists a solution c(z, t) in the same time and

space intervals.

In the rest of this section we will derive properties of the solutions c(z, t) and r/(z, t).

Study of these properties is important not only for the understanding of the behavior of the

infiltration process, but also to find ways to speed up the process, in particular it will help

us to define a successful process.

In the following Lemma we will consider the behavior of the concentration function c(z, t)

Lemma 3

The concentration function c(z, t) is a positive function for 0 _< z < 1 for any 0 _< t < t_.

Moreover, c(z, t) decreases as a function of z.

Proof

We multiply (22) by c(z, t) for every 0 < t < t_ and integrate from some point z to the

point z = 1 taking into account that the spatial derivative of c(z, t) vanishes at z -- 1. For

convenience we drop the dependence on t. We then get

-c( z) f (Tl(z) ) dC_zZ)

(30)

thus c(z)_ ) is negative. It can never vanish, since, if c(z) vanishes at a point z0 then
a_ vanish in the intervalthe right hand side of (30) has to vanish and thus both c and

[z0, 1]. By the standard theory of linear differential equations the solution c(z, t) must vanish

everywhere. So that c(z)_ is strictly negative. Since c(0, t) = 1, it follows that c(z) is

positive and _ is negative. Thus the lemma is proven.

6



We turn now to the behavior of r/(z, t) as a function of the spatial variable z, for any
fixed t.

Lemma 4

The function r/(z, t) increases as a function of z. In particular

rl(O,t) < _(z,t)<_o (31)

where r/(O, t) is given in (28).

Proof

Consider equation (21) and integrate with respect to t to get

lf0tr/(z,t) = rJ0-_ _3(r)c(z,r)dr (32)

By Lemma 3, c(z, t) is monotonically decreasing (in z), therefore r/(z, t) is monotonically
increasing (in z).

The lower bound in (31) is a consequence of the monotonicity of r/, the upper bound is

a result of (32) and the fact that c(z, t) is positive.

[]

We can also establish an upper bound on the concentration function c(z, t):

Lemma 5

The concentration function c(z, t) is bounded by

c(z,t) < cosh'Yl(1-z)
- cosh(%) (33)

where

= a(t) (34)

In particular if _(t) = (_(0), is independent of time, then

c(z,t) < c(z,O) (35)

Proof

Denote first by F(z, t) the solution of

02

oz2F(z,t)-__F(z,t) = 0 (36)



with the boundary conditions

F(0, t) = 1
OF
--(1,t) = O. (37)

' Oz

The solution of (36) is clearly

F(z,t) =
cosh 71(1 - z)

cosh(71)
(38)

We rewrite now equation (22) as

+ f_ Oc(z,t) _ ,)2c(z,t) (39)
f Oz

where

rl(z' t) (40),,/ = f(r_(z,t)) c_(t)

We multiply now (36) by c(z,t), (39) by F(z, t) and integrate between some z and 1,

taking into account that the spatial derivatives of both c(z, t) and F(z, t) vanish at z = 1,

to get:

-- ( F(_COZ -- COF_-'_z/ --- -- fzl fZ _zzFd_-t- fzl(_'2 - _/2)Fcd_7
(41)

Now fz > 0 since f is monotone in 7/and r/is monotone in z. Bv_ Lemma3, _Oz is

negative and so while F is positive. Also we have assumed that _ is monotone so that

2,2 - _/_ is positive. We conclude that the RHS of (41) is positive. Thus

or-co-- Z < 0 (42)

Leading to

0 c(z,t)
< 0 (43)

Oz F(z, t) -

Since at z = 0, c(z, t) = F(z, t) = 1 we can conclude

c(z,t) < cosh3q(1-z) (44)
- cosh('yl)

We note that if a(t) is constant in time then _/1 defined in (34) is exactly % defined in

(27) and thus F(z, t) = c(z, O) proving (35).

[]
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With Lemma 5 proven we can find a better lower bound on the pore function T/(z, t) than

the one given in Lemma 4.

Lemma 6

The pore function _/(z, t) is bounded from below by

_> 0-/0
where F(z, t) is given in (38).

Proof

By Lemma 5, c(z, t) < F(z, t). Substituting in (32) we get (45).

The above lemmas provide us with an insight into the behavior of the solution.

summarize the main points as follows:

(45)

[]

We

• For any fixed time t, the pore function _l(z, t) is a monotonically increasing function

(in z), achieving the value r/(0, t) (defined in (28)) at z = 0. The function 7/(z,t) for

any time is bounded from above by the initial value r/0, and from below by (45).

• At the time tz the solution becomes discontinuous. In fact integrating (22) between

z=0andz=lweget

-fO?(O,t))_lz=o = fola2(t)7?(_,t)c(_,t)d_ (46)

Since the RHS is positive _ must tend to infinitv Tv
Oz z=O _ "

• The concentration function c(z, t) is bounded from above by (44) and is monotonically

decreasing as a function of z for any t. The derivative at z = 0 is becoming more and

more negative.

• The function _/(z, t) is a decreasing function in time.

4 Optimization

After establishing the properties of the solutions, we turn to discuss the concept of a suc-

cessful process. In CVI, it is generally desirable to produce a solid with a relatively uniform

porosity distribution.

The process obviously terminates if 7?(0, t) is small, and we would like r/(z, t) to be uni-

formly small, i.e. we do not want r/(z, t) to have a large variation in space. Consider therefore

the average of e:



Definition:

1_(t) = r/2(_, t)d_ (47)

By a successful process we mean a process such that _(t) _< _f for a given target value _/

for some tf < tz. We will show that for each target value _: there are functions a(t),_(t)

such that the process is successful. The question is how to pick a(t),_(t) such that the final

time tf is minimal.

We start by observing

Lemma 7

Let _(t) defined in (47). Then _(t) is a monotonically decreasing function of t

Moreover

d_(t) _ 3(t) Oc(z,t),
dt _--_) f(_(0, t)) 0z Iz=0 (48)

Proof

Upon differentiating _(t) we get

d_(t)

dt
- 2 f/l_(_,t)_t(_,t) (49)

= -_(t) fn 1 _(_,t)c(_,t)d_ (50)

_(t) [1 0 (f(7?(_,t))0c(_,t))d_ (51)_(t) _o _ o_

_(t) ,,,o_(_,t),
- a2(t)f(rl(O,_::----O--ff--z .Z=O (52)

< 0 (53)

For the first two steps we used the differential equations (21) and (22), the last step used

the fact that c °_(z't) is negative (see Lemma 3 (31))
Oz

[]

Lemma 7 implies that the average concentration _ is decreasing in time for any parameters

a(t), _(t). This however does not necessarily yield that the process is successful and that

there is a time t: < tz in which _ < _f. We need a better estimate of _. This is given in the
next lemma.

Lemma 8

Let _(t) be the concentration average defined in (47). The following estimation holds

10



_(t) < _o_riot _(_)_ _ |- a--_ Vr_iu'_-)f(r/(O'T))tanha(r) f(r/(O,_-))r/(O'7)

where r](O, t) is given in (28).

Proof

Let

dT (.54)

cosh72(1 - z)
d(z,t) =

cosh72

"_'2

Clearly the function d(z, t) satisfies

I _(o,t) _(t)f(_(o,t))

(55)

0 ( Od(z,t)) = a2(t)7?(O,t)d(z,t) (56)0--_ f(_(O,t)) O_

Od t) o (57)
d(O,t)=l , _z(1, =

We multiply now (22) by d(z, t), (56) by c(z,t), subtract and integrate between z = 0

and z = 1. Taking the boundary conditions for c(z, t), d(z, t) into consideration we get:

-f(_l(O,t))
Oc(z,t) Od(z,t)

Oz [z=o+f(_l(O,t)) Oz Iz=0 : (58)

_2(t) fol(r/(_, t) - _(O,t))c(_,t)d(_,t)d_

f 1 (f(q(_,t)-.f(rl(O,t)) Oc(_, t) Od(_, t) d_+
Jo o_ o_

The right hand side of (58) is positive leading to

Oc(z,t) Od(z,t)

Oz iz=O <- O------_lz=O (59)

= -_/_tanh('y2) (60)

We turn now to (48) and integrate (in respect to the time t) to get

_(t) : _o + f(r/(0, T)) --

Substituting (59) into (61) yields (54).

0_(_,_)
OZ

Iz=od_- (61)

11
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W'e will show now that for any target value _I there are functions a(t) and/3(t) such that

the process is successful. In fact we will show that a successful process can be obtained by

choosing time independent a(t) = a and/3(t) =/3. In this case (28) reads

1

q(0, t) = 7/o- _/3t (62)

and the terminal time is given by

27/o (63)
t_ = /3

In the following Lemma we show that we can always choose a small enough to have a

successful process.

Lemma 9

Let q(z, t) be the solution of (21),(22) with fixed a and/3. Let _ be defined in (47). Then

lim _( 2r/0
_-_0 --_-) = 0 (64)

Proof

We start by using (54) for fixed c_ and/3 and the expression (62) for q(O, t) to get

-i tanh(g(T,a)) d_- (65)_, 2_70, s

_-[-5-) _< _o- Jo /37/(0,7") 0(_,_) )

Where

i r/(O, t) (66)g(t,a) = a(t) f(7?(O,t))

W'e introduce now a change of variables

To get

fo 1 tanh(G(_,a)g( ) _< _0-2T/02 (1-_) G((,a) )d_ (67)

We use now the Lebesgue theorem and the fact that G(_, a) tends to zero as c_ tend to

zero to conclude that

. __27/0

_ma--+O_ [ -'if- )

This proves the Lemma.

1_< _o - 2_0 (1 - _)d_ = 0 (68)

12



[]

The parametersa and 3 are not independent. In fact :3 is proportional to a 2 see (16).

Thus if we choose these parameters as constants as in Lemma 9, the time needed for the

completion of a successful process is very long. We would like to minimize that time. We

therefore formulate the following minimization problem.

Problem:

Let r/(z, t),c(z, t) be the solution of (21-25) for some a(t), 3(t). Let the average concen-

tration be defined in (47). Given a target concentration value g/ we define the final time

t/(a, 3) as the first time such that

<_c:

find min,_(t),_(t) tl(a, 3).

We did not solve this optimization problem, however Lemma 9 provides us with some

insight to the minimization process. In fact it is easier to treat the upper bound on the

average concentration given in (54).

In the following we will show an example in which some savings in the time needed to

reach the target value g(tl) is realized by choosing a and 3 that are time dependent.

Consider the special case

Z(t) = 2 2(t)

and

This expression for f(r/) corresponds to the case were -Nk << 1 and O = 77-1. Physically,

the small value of Nk means that Knudsen diffusion contributions are not significant. As the

porosity is filled by the matrix phase this assumption will invariably break down, however,

with relatively large pressure and/or pore sizes, Nk will only become significant at the end

of the process. In this case; the analysis presented below (i.e., where J'_ was ignored) will

be reasonably accurate.

In this case we may rewrite the estimate (54) for the average concentration in the form

where

_(t) <_ _ _ rit ._(T)77(0, 7-) tanh_:2 dr (69)
./o "/2

-

13



and the pore function 7/(0, t) is given in Lemma 2. From this Lemma we can deduce that

d

= -25;_(0, t ) (70)

We will look now for a design function o(t) such that "y2 is independent of time.

This leads to an explicit expression for o(t), in fact solving

_(t) _ R2
_(0,t)2

and taking into account that

d Ot)_2(t) = -_,7( ,

we get

71° (71)
_7(O,t) - l+qoR2t

tRt,7o (72)
a(t) - l + qoR2t

We can now substitute the result in (69) to get

_(t) <_ r_ tanh'72 ( IRlrl_ )"Y2 (1 + ,oR2t) 2 - _ (73)

The parameter R can be chosen to minimize the time needed for g(t) to be less than the

target value. This approach leads to some savings, as described below.

5 Numerical Results

We have solved numerically the following set of equations

(rl3Cz) +a2rlc = 0

_t = -13c

subject to the initial condition

and boundary conditions

(74)

(75)

rl(z,0) = 1 (76)

c(O,t) = 1 Cz(1,t) = 0 (77)

To discretize (74) we used the pseudospectral Chebyshev method. In this method we choose

the grid points to be

1 + cos(_) 0 < j < N (78)
x3 -- 2 - -

14



N is the total number of grid points.

The spectral differentiation matrix takes the value of a given function at the gridpoints

xj and yields the values of the derivative of the interpolation polynomial at these points.

The points xj are the nodes of the Gauss Lobatto Chebyshev quaderature formula. The

matrix can be written explicitly:

Djk = !_% (_l)J+k
2 ck sin _rN(j+k) sin _N(--j+k)

1 xL._. -
Djj = 2 si_n (Nj )

Doo = --DNN = 2--N2+1
6

jCk,

j -¢ 0, N, (79)

We apply the matrix Djk twice, once for the vector c taking into account the boundary

condition c(0, t) = 1 and then to rlac_ now taking into account that Cz(1, t) = 0. This yields

a linear system for the values of c(xj, t).

In the next stage we update rl by the standard fourth order Runge-Kutta scheme.

• We first ran the scheme with constant a (fl = 52) with the requirements that the

process stops when f is less than 5% of the original value, and also that c(1, t) will

be less than 8%. The largest a (and therefore the shortest time to reach the end of

the process) that satisfied the conditions was a -- .235. The total time needed for the

process to settle was
2.458

tll - _(0)

• We then used formula (72) to choose a(t) where a(0) = .3.

process terminated successfuly at time

t f2 : .963tfl

Again 3(t) = a2(t). The

• A better strategy was to use (72) until a became smaller than .25 and then to raise it

to .27 and reapply (72). Here too _(t) = c_2(t). The process terminated here at

ti3 = .935tfl

Whereas the savings do not seem extremely significant, they indicate that one can get better

results by varying the design parameters c_ and 2] with time.

• Another possibility is to change the relationship between a and 13 in time. This is

motivated by Lemma 9. It is clear from this Lemma that for the process to converge

we need a, small. It is also clear that the time for the process to settle is proportional

to (_3) -_, thus one wants to minimize a to get a successful process and to maximize 3
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to reducetime. We ran our problemwith a(0) = .4 and _(0) = a2(0). We then varied

in time according to (72) while holding _ fixed. We got convergence at

t f4 = .397tf1!!!

(the final a was .2). This result indicates that great savings can be obtained by choosing

appropriate values for the design functions a(t) and _(t).

6 Conclusions

In summary, the mathematical results presented here are potentially important in several

ways. First they provide detailed information on the solutions in space and in time, as

well as upper and lower bounds. The formulation and general analysis provide a basis for

understanding the infiltration process in terms of only two parameters: a and _. The

treatment of the optimization problem makes it possible to assess optimal (i.e. minimal)

infiltration times concisely. The observation that the minimum time can be dramatically

decreased by varying a with time is particularly important because of the long times that

are typically associated with CVI. Varying a while _ is constant requires varying one or

more of the relevant processing conditions (e.g., T, Cr, or P) in a controlled way. A detailed

analysis of these possibilities will be presented elsewhere ([12]).
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